Carbon capture and storage (CCS) of carbon dioxide emissions generated by production or combustion of fossil fuels is a technologically viable means to reduce the build-up of CO2 in the atmosphere and oceans. Using advantages of scale and location, CCS is particularly suitable for large point sources near ubiquitous deep saline aquifers, depleted gas reservoirs, or at production reservoirs for enhanced oil recovery (EOR). In the BES-funded research project, Oregon State University (OSU) carried out capillary trapping experiments with proxy fluids that mimic the properties of the scCO2/brine system under ambient temperatures and pressures, and successfully developed a unique and novel x-ray compatible, high-pressure, elevated temperature setup to study the scCO2/brine system under challenging reservoir conditions. Both methodologies were applied to a variety of porous media, including synthetic (glass bead) and geologic (Bentheimer sandstone) materials. The University of Arizona (UA) developed pore-scale lattice Boltzmann (LB) models which are able to handle the experimental conditions for proxy fluids, as well as the scCO2/brine system, that are capable of simulating permeability in volumes of tens of millions of fluid elements.